AI_botter/node_modules/@dqbd/tiktoken/README.md
2024-04-30 17:46:10 -08:00

285 lines
8.2 KiB
Markdown

# ⏳ tiktoken
tiktoken is a [BPE](https://en.wikipedia.org/wiki/Byte_pair_encoding) tokeniser for use with
OpenAI's models, forked from the original tiktoken library to provide NPM bindings for Node and other JS runtimes.
The open source version of `tiktoken` can be installed from NPM:
```
npm install @dqbd/tiktoken
```
## Usage
Basic usage follows, which includes all the OpenAI encoders and ranks:
```typescript
import assert from "node:assert";
import { get_encoding, encoding_for_model } from "@dqbd/tiktoken";
const enc = get_encoding("gpt2");
assert(
new TextDecoder().decode(enc.decode(enc.encode("hello world"))) ===
"hello world"
);
// To get the tokeniser corresponding to a specific model in the OpenAI API:
const enc = encoding_for_model("text-davinci-003");
// Extend existing encoding with custom special tokens
const enc = encoding_for_model("gpt2", {
"<|im_start|>": 100264,
"<|im_end|>": 100265,
});
// don't forget to free the encoder after it is not used
enc.free();
```
In constrained environments (eg. Edge Runtime, Cloudflare Workers), where you don't want to load all the encoders at once, you can use the lightweight WASM binary via `@dqbd/tiktoken/lite`.
```typescript
const { Tiktoken } = require("@dqbd/tiktoken/lite");
const cl100k_base = require("@dqbd/tiktoken/encoders/cl100k_base.json");
const encoding = new Tiktoken(
cl100k_base.bpe_ranks,
cl100k_base.special_tokens,
cl100k_base.pat_str
);
const tokens = encoding.encode("hello world");
encoding.free();
```
If you want to fetch the latest ranks, use the `load` function:
```typescript
const { Tiktoken } = require("@dqbd/tiktoken/lite");
const { load } = require("@dqbd/tiktoken/load");
const registry = require("@dqbd/tiktoken/registry.json");
const models = require("@dqbd/tiktoken/model_to_encoding.json");
async function main() {
const model = await load(registry[models["gpt-3.5-turbo"]]);
const encoder = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoding.encode("hello world");
encoder.free();
}
main();
```
If desired, you can create a Tiktoken instance directly with custom ranks, special tokens and regex pattern:
```typescript
import { Tiktoken } from "../pkg";
import { readFileSync } from "fs";
const encoder = new Tiktoken(
readFileSync("./ranks/gpt2.tiktoken").toString("utf-8"),
{ "<|endoftext|>": 50256, "<|im_start|>": 100264, "<|im_end|>": 100265 },
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)|\\s+"
);
```
Finally, you can a custom `init` function to override the WASM initialization logic for non-Node environments. This is useful if you are using a bundler that does not support WASM ESM integration.
```typescript
import { get_encoding, init } from "@dqbd/tiktoken/init";
async function main() {
const wasm = "..."; // fetch the WASM binary somehow
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoding = get_encoding("cl100k_base");
const tokens = encoding.encode("hello world");
encoding.free();
}
main();
```
## Compatibility
As this is a WASM library, there might be some issues with specific runtimes. If you encounter any issues, please open an issue.
| Runtime | Status | Notes |
| ---------------------------- | ------ | ------------------------------------------ |
| Node.js | ✅ | |
| Bun | ✅ | |
| Vite | ✅ | See [here](#vite) for notes |
| Next.js | ✅ | See [here](#nextjs) for notes |
| Create React App (via Craco) | ✅ | See [here](#create-react-app) for notes |
| Vercel Edge Runtime | ✅ | See [here](#vercel-edge-runtime) for notes |
| Cloudflare Workers | ✅ | See [here](#cloudflare-workers) for notes |
| Deno | ❌ | Currently unsupported |
### [Vite](#vite)
If you are using Vite, you will need to add both the `vite-plugin-wasm` and `vite-plugin-top-level-await`. Add the following to your `vite.config.js`:
```js
import wasm from "vite-plugin-wasm";
import topLevelAwait from "vite-plugin-top-level-await";
import { defineConfig } from "vite";
export default defineConfig({
plugins: [wasm(), topLevelAwait()],
});
```
### [Next.js](#nextjs)
Both API routes and `/pages` are supported with the following `next.config.js` configuration.
```typescript
// next.config.json
const config = {
webpack(config, { isServer, dev }) {
config.experiments = {
asyncWebAssembly: true,
layers: true,
};
return config;
},
};
```
Usage in pages:
```tsx
import { get_encoding } from "@dqbd/tiktoken";
import { useState } from "react";
const encoding = get_encoding("cl100k_base");
export default function Home() {
const [input, setInput] = useState("hello world");
const tokens = encoding.encode(input);
return (
<div>
<input
type="text"
value={input}
onChange={(e) => setInput(e.target.value)}
/>
<div>{tokens.toString()}</div>
</div>
);
}
```
Usage in API routes:
```typescript
import { get_encoding } from "@dqbd/tiktoken";
import { NextApiRequest, NextApiResponse } from "next";
export default function handler(req: NextApiRequest, res: NextApiResponse) {
const encoding = get_encoding("cl100k_base");
const tokens = encoding.encode("hello world");
encoding.free();
return res.status(200).json({ tokens });
}
```
### [Create React App](#create-react-app)
By default, the Webpack configugration found in Create React App does not support WASM ESM modules. To add support, please do the following:
1. Swap `react-scripts` with `craco`, using the guide found here: https://craco.js.org/docs/getting-started/.
2. Add the following to `craco.config.js`:
```js
module.exports = {
webpack: {
configure: (config) => {
config.experiments = {
asyncWebAssembly: true,
layers: true,
};
// turn off static file serving of WASM files
// we need to let Webpack handle WASM import
config.module.rules
.find((i) => "oneOf" in i)
.oneOf.find((i) => i.type === "asset/resource")
.exclude.push(/\.wasm$/);
return config;
},
},
};
```
### [Vercel Edge Runtime](#vercel-edge-runtime)
Vercel Edge Runtime does support WASM modules by adding a `?module` suffix. Initialize the encoder with the following snippet:
```typescript
// @ts-expect-error
import wasm from "@dqbd/tiktoken/lite/tiktoken_bg.wasm?module";
import model from "@dqbd/tiktoken/encoders/cl100k_base.json";
import { init, Tiktoken } from "@dqbd/tiktoken/lite/init";
export const config = { runtime: "edge" };
export default async function (req: Request) {
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoding = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoding.encode("hello world");
encoding.free();
return new Response(`${tokens}`);
}
```
### [Cloudflare Workers](#cloudflare-workers)
Similar to Vercel Edge Runtime, Cloudflare Workers must import the WASM binary file manually and use the `@dqbd/tiktoken/lite` version to fit the 1 MB limit. However, users need to point directly at the WASM binary via a relative path (including `./node_modules/`).
Add the following rule to the `wrangler.toml` to upload WASM during build:
```toml
[[rules]]
globs = ["**/*.wasm"]
type = "CompiledWasm"
```
Initialize the encoder with the following snippet:
```javascript
import { init, Tiktoken } from "@dqbd/tiktoken/lite/init";
import wasm from "./node_modules/@dqbd/tiktoken/lite/tiktoken_bg.wasm";
import model from "@dqbd/tiktoken/encoders/cl100k_base.json";
export default {
async fetch() {
await init((imports) => WebAssembly.instantiate(wasm, imports));
const encoder = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoder.encode("test");
encoder.free();
return new Response(`${tokens}`);
},
};
```
## Acknowledgements
- https://github.com/zurawiki/tiktoken-rs